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Summary. We investigate the validity of several common approximations in the 
analysis of nonadiabatic intramolecular electron transfer rate constants. Utilizing 
the Fourier representation of the golden rule form, we study the evolution of the 
vibrational correlation function that represents the density-of-states-weighted 
Franck-Condon factor. In particular, we test the validity of the perturbation 
theoretic golden rule form and of the Gaussian wavepacket representation for the 
vibrational wavefunctions against numerically exact quantum mechanical propa- 
gations. Although specific cases are found in which both of these break down, for 
a wide range of conditions (including anharmonic behavior and frequency 
changes), both the Gaussian wavepacket representation and the golden rule are 
excellent approximations. 
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1. Introduction 

With his usual economy and elegance, Jan Linderberg was one of the earliest 
theoretical chemists to stress the importance of correlation functions, of spectral 
representations, and of semiclassical theory [1]. All of these have, over the past two 
decades, become extremely important in theoretical analysis of spectroscopic and 
rate processes in chemistry. Starting from ideas very similar to those of linear 
response as developed by Kubo [2], Gordon [3] and Heller [-4] introduced into 
chemistry the very convenient analysis in terms of time-dependent correlation 
functions. While the early work was largely limited to spectroscopy, subsequent 
extension has also permitted application to rate phenomena [5-11, 41, 42], includ- 
ing (in particular) proton and electron transfer. 
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Another very important trend in current theoretical chemistry (and, again, one 
that Jan Linderberg has participated in from the beginning [12]) is the use of 
numerical representations and quasi-spectral methods to solve for the quantum 
dynamics of small systems [13-15]. Introduction of such grid techniques, in 
particular by Kosloff [13, 14], has allowed chemists to analyze the time depend- 
ence of small-molecule processes exactly, and thereby to understand some of the 
intimate details of short-time dynamical phenomena in chemistry. 

In this paper, we utilize these numerically exact quantum dynamic analyses to 
investigate some generalities of nonadiabatic intramolecular electron transfers 
[16-24]. Using simple few-mode model systems, we test two of the most important 
approximations used in the time-dependent analysis of electron transfer rates, the 
applicability of the golden rule form and the limitations of simple Gaussian 
wavepacket representations for the vibrational levels. We find, in general, that for 
a broad range of cases both of these approximations are excellent; this is important, 
since they lead to particularly convenient and tractable representations for dynam- 
ical computation of vibrational effects (including dephasing, energy relaxation, and 
tunneling) in an electron transfer reaction. 

Electron transfer rate phenomena are determined by a very broad range of 
physical effects, of which only the most important (vibrationally modulated elec- 
tronic state mixing) are dealt within this contribution. Effects such as solvent 
dynamics, solvent and slow mode gating, counterion control and specific solvation 
are also very important [16-28]; while many of them can be treated within the 
general analytical schemes presented here, to do so goes beyond the scope of the 
current effort. 

In Sect. 2, we present a very brief overview of standard nonadiabatic electron 
transfer theory. Section 3 overviews the correlation function/Fourier representa- 
tion picture for electron transfer rates, and discusses both the golden rule approx- 
imation and the approximation of using a Gaussian wavepacket representation in 
contrast to the numerically exact quantum grid propagation. The core of the 
current paper in Sect. 4, in which these approximations are tested for some simple 
few-mode examples of intramolecular electron transfer reactions. Finally, com- 
ments are made in Sect. 5. 

2. Intramolecular nonadiabatic electron transfer: An overview of standard 
rate approaches 

The simplest understandings of nonadiabatic electron transfer reactions are based 
on the transition state model, as originally developed by Marcus [16, 17, 29]. The 
simple picture ignores nuclear tunneling, and equates the rate of electron transfer 
to the activated complex expression that would result from a coupling of two 
harmonic potential surfaces. Referring to Fig. 1, we define by A G  o the exoergicity, 
or overall reaction free energy, the difference between the origins of the free energy 
curves corresponding to product and reactant. Along any given mode (for present 
purposes this can be understood simply as a normal coordinate, either of the 
intramolecular vibrations or of the solvent, the latter considered as a polarizable 
continuum or a set of phonon-like modes), we take the potential surfaces as simply 
two parabolas, the one on the left representing the reactant, the one on the right the 
product. The so-called reorganization energy along this mode, denoted by 2i, is the 
energy of the product curve, relative to its own origin, at the geometry of the 
minimum on the reactant curve. Utilizing the definitions of A G o and )~z as given in 
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Fig. 1. Schematic view of the free energy surface along the ith 
normal mode defining the reorganization energy 2.  its 
displacement Ai, and the reaction free energy AG o 

Fig. 1, it is a simple algebraic exercise to show that the activation energy between 
the minimum reactant and the (slightly avoided) curve crossing is 

(AG o + ,~i)2 
E~ - (1) 

42i 

In case of several degrees of freedom, the total reorganization energy is just a sum 

2 = Z 2 .  (2) 

and when substituted into a standard activated complex theory, this yields for the 
rate constant of electron transfer 

k = ko e-(ac;'°+;')=/42kBT (3) 

with k, ko, and kB, respectively the rate constant, frequency prefactor, and Boltz- 
mann constant. 

For nonadiabatic electron transfers, simple curve crossing analysis gives [18], 
to the lowest order in a curve crossing, the standard Marcus nonadiabatic electron 
transfer rate expression 

V 2 (  x ~ 1/2 
kM = T \2k-~T ] e-(aO°+;a2/4;~k"r" (4) 

Here V is the nonadiabatic electron transfer matrix element that corresponds to 
half the splitting of the reactant and product adiabatic surfaces, at the point of 
curve crossing. A more precise definition is given in Eq. (6) below. This Marcus 
result has proven both accurate and useful for an enormous number of applications 
in nonadiabatic electron transfers, including in particular the prediction of so- 
called "inverted regime behavior", for which the exoergicity exceeds the reorgan- 
ization energy, and the rate is then predicted (and observed) to decrease with 
increasing driving force [30]. 

Many generalizations and extensions of the Marcus model have been produced 
over the years, many by Marcus himself [31]. Particularly useful early analyses 
were given by Jortner [24] and by Fischer and van Duyne [23] based on the use of 
spin-boson pictures and correlation function rate expressions. These analytic 
approaches yield, using steepest descent analysis to characterize the energy flow 
[22-24], semi-analytic expressions for the rate constant. More recently, the same 
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approach has been used in calculations of rate constants, with the specific time- 
dependent analysis of the correlation function for nuclear motion [5-7], following 
the scheme first suggested by Heller for spectroscopy [4]. 

3. Nonadiabatic electron transfer rate constant: Golden rule expressions and 
wavepaeket representations 

3.1. Coupled surface diabatic formulation 

Complete analyses of the spin-boson representation for nonadiabatic electron 
transfer can be found in several places [20-24]. For clarity, we restrict ourselves 
here to a simple overview and generalize the model to allow for arbitrary vibra- 
tional motion. Following the general treatment of Marcus and the spirit of 
the spin-boson model, in the electron transfer event being considered only two 
electronic states are relevant to the problem. Figure 1 represents a cut along one of 
the normal coordinates of the multidimensional potential energy surface. The 
wavefunction for this system, expressed as a sum of products of wavefunctions for 
the nuclear and electronic degrees of freedom is 

7 /=  ~Rle~) + teplep), (5) 

where l e~) represents the electronic wavefunction for the ith potential surface. The 
participation of two states signifies that the simple adiabatic Born-Oppenheimer 
formulation is an inadequate model. By choosing adiabatic representation and 
integrating over the electronic degrees of freedom, the dynamics can be based upon 
the following coupled equations for nuclear motion which govern the amplitudes 
upon the reactant and product electronic potential energy surfaces: 

01//R = HRI//R "~ (e  R II?1 ep) t/@, (6) 

gt 

The above equations assume potential couplings between the reactant and the 
product electronic surfaces. The Hamiltonian for the ith surface is/4i = Ti + l~i 
with Ti denoting the kinetic energy operator and l~i the potential operator. 
The potential coupling element corresponding to a transition from surface i to 
surface j is given by Vi~ = (ej[ 171 ei). 

With the formulation of Eq. (6), the electron transfer dynamics can be solved. 
Choosing a normal coordinate representation for each mode (ignoring all anhar- 
monicities) considerably simplifies the Hamiltonian operation as each surface 
Hamiltonian is then completely separable. The only coupling which remains is the 
potential coupling between the electronic surfaces responsible for the electron 
transfer rate or the back electron transfer rate after photoabsorption within the 
charge transfer (CT) band. Thus, the analysis requires propagation of nuclear 
wavefunctions for which a number of techniques are available [13, 14]. The 
wavefunction for the initial state is determined by an imaginary time relaxation 
procedure on the relevant electronic potential energy surface [32]. With this initial 
wavefunction the equations of motion are integrated by a short iterative Lanczos 
(SIL) scheme [15, 33]. When only the electron transfer rate is desired, propagation 
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can alternatively be performed with a Chebychev expansion of the evolution 
operator adapted for short-time calculation of autocorrelation functions [13]. 
A fourth-order Runge-Knt ta  scheme is employed to integrate the Gaussian 
wavepacket parameters. 

3.2. Electron transfer process 

From the equations of motion given in Eq. (6) the change in the population on 
a surface can be determined 

d 2 ^ 
d t  ( ~R(t) l ~rJR(t)5 = ~ Im [(~UR(t){ VRp I kUp(t)}], 

d 
dt  (kUp(t)[ ~Uv(t)) = - Im[(kUR(t)[ VRPI ~Uv(t))]. (7) 

The time derivative of the normalization is recognized as the transition probability 
per unit time or the instantaneous rate. A time-dependent potential coupling [8] 
defines the nonadiabatic coupling process which characterizes the electron transfer 
event 

v.~(t) = (~'R(t)l PR, 1%(0) .  (8) 

Then the instantaneous rate is given by the imaginary part of the time-dependent 
potential coupling 

2 
re (t) = -- d (TR (t)[ 7~R(t)} = --~ Im [ VRp(t)]. (9) 

To obtain a more transparent expression for the rate, consider the formal exact 
solution to Eq. (6) where the lower limit of integration is set to the origin of time for 
the experiment and the process being simulated: 

TR(t) = e-iORt/hTR(0) -- ~ dt' e -u~"(z-r)/h ~'RVTJv(t'), 

i L Up(t) = e-i9Pt/hTe(0) -- ~ dt' e -igP(t-t')/h VpR~R(t'). (10) 

The electron transfer process assumes that no amplitude is originally present on the 
product electronic surface so that only the second term for Up(t) is retained in 
Eq. (10). Then 

Fe(t) = ~-/Re d t ' ( T R ( t ) [  VRpe -iHp(t-t')/~ ~'PR[ ~R( t ' ) )  - (11) 

Equation (11) specifies an instantaneous value for the electron transfer rate con- 
stant. However, no experiment can determine an instantaneous rate. All real 
detection systems observe a signal that is integrated over a characteristic time 
interval. This is perfectly in keeping with the notion that rate constants are truly 
constant and therefore independent of time. Defining a new wavefunction 
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[q~(t)) = Peel 7JR(t)), the dynamics of a "potentially dressed" reactant state can be 
examined for some period T. 

1 /-r 2 [- (.t ] 
re-- = y Jo dt  ekJo d t ' ( @ ( t ) [ e - ~ ( t - t ' ) / h l q ) ( t ' ) )  " (12) 

The electron transfer rate given by Eq. (12) is portrayed as the dynamic overlap of 
a nonstationary state qS(t) defining the electron localized on the reactant site (such 
as a donor) with its prior evolution from t' to t upon the electronic surface 
characteristic of the product (e.g., an acceptor) nuclear configuration. Under 
appropriate conditions this overlap can be taken between stationary states. 

3.3. Linear response limit-golden rule 

Since Eq. (12) is an exact relation, one can recover the linear response result (first 
order in perturbation theory)for the electron transfer rate. If the magnitude of 
121~v is small, the potential coupling can be considered as a perturbation. Then the 
second term for 7~R(t) in Eq. (10) may be neglected. Therefore, for a vibrational 
eigenstate of the reactant electronic surface, ~R(t)= e -i~"t/h 7JR(0). This value is 
inserted into the equation for 7'e(t) in Eq. (10), yielding the amplitude to first order: 

/,r 2 F f.t ^ ^ ] 
l jodtgP.e[Jodt'e-'~""/"<'t',(O)lP,,e-~'P""V~,l~,(O)>] (13) Fo=~ 

In a time time-dependent framework the difference between the linear and 
nonlinear response expressions for the rate (Eqs. (13) and (12)) arises in transitions 
between stationary versus nonstationary reactant states. The two inner integrals 
over each of the complex conjugate terms combine together to yield a full finite 
Fourier transform in this linear response limit: 

lf~ i f  t F~ = -~ d t ~  -t dt' e-ie"t'/h<~l~(t')), (14) 

where ~ =  VRVT~(0) and ~b(t)=e-~°Pt/h~. If the autocorrelation function, 
(~] ~b(t')), decays to zero at t = z, the inner integral becomes time independent for 
all times greater than z and the subsequent time-averaging operation makes no 
contribution to the rate. Since this time-independent result is just the instantaneous 
rate of Eq. (9), the transition probability per unit time is also time independent, in 
accord with the first-order perturbation theory expression of Fermi's golden rule. 
The limits of integration may than be formally extended to infinity, 

1;+ i (15) 

to yield the standard result of linear response theory interpreted within a time- 
dependent wavepacket framework [3, 4]. This equivalence is best observed in the 
expression for the photoabsorption cross section that corresponds to the optical 
transition of the donor, 

a((o) = ~  _ dte-~(~'+e"/h)'(XlZ(t)>, (16) 
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where now Z = IapRekUR(0). When the potential coupling is taken to be coordinate 
independent (Condon approximation), aside from the prefactor, the electron trans- 
fer rate is seen to correspond to a "zero" frequency vertical optical transition. 
A similar parallel exists for the charge transfer absorption. 

3.4. Vibrational representat ions-  Gaussian wavepackets 

The correlation function expression in Eq. (15) represents vibrational motion, and 
can be calculated exactly using grid methods [13-15]. A number of workers [6, 7] 
have suggested that it should generally be adequate to replace the vibrational states 
in Eq. (15) by the representation in terms of Gaussian wavepackets, as given by 

[i i ] 
~V(Q, t) = exp ~ A(t)[Q - Q(t)] 2 + iP(t)[Q - Q(t)] - ~ G(t) (17) 

for a particular mode Q. The variables Q(t), P(t), A(t), and G(t) denote the dimen- 
sionless coordinate, momentum, width, and phase of the Gaussian wavepacket, 
respectively. Their time evolution follows from equations of motion given by 
Heller [4] 

dQ(t) 
- coP(t), 

dt 

d P ( t )  1 8V  o=q(t) 
dt h 0Q ' 

2~ 1 82V 
dA(t)dt A2(t) 2 0Q 2 ~=O(t)' 

dG(t) _ fio)p2(t) + icoA(t) - E, 
dt 

(18) 

where V (which will be either VR or Vp) denotes the potential for vibrational motion 
for the Qth mode. The frozen Gaussian approximation results when A(t) = con- 
stant in Eq. (18). 

Nitzan and Neria [6] have argued, and demonstrated, that in the very short 
times generally involved in the meaningful evolution of Eq. (15) (generally less than 
50 fs), there is not really time for the Gaussian wavepackets to spread, and therefore 
that use of frozen packets with appropriate widths will give an excellent approx- 
imation for the evolution of the correlation function. They tested this by analysis of 
two limits for a harmonic oscillator, one where the product state is another 
identical displaced oscillator, and the second where the product state is simply 
a dissociative linear potential. One aim of the current paper is to test the validity of 
the Gaussian and frozen Gaussian approximations by comparison with exact 
propagations. 

The golden rule result of Eq. (15) is, itself, based on truncation of the equations 
of motion given in Eq. (10) assuming a small mixing coefficient V. More generally, 
one can simply solve the equations exactly yielding Eq. (12). When these equations 
are solved to lowest order in I?, one recovers the golden rule expression of Eq. (15). 
The second aim of the current paper is to test the validity, in particular simple 
models, of the golden rule expression. 
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4. Applicability of the golden rule and Gaussian wavepackets 

4.1. Gaussian wavepackets 

Gaussian wavepackets are often employed to represent the vibrational motion 
when calculating intramolecular electron transfer rate constants. Furthermore, the 
Gaussians are generally taken to be "frozen" so that their widths do not change 
during their evolution. These approximations are predicated upon the assumption 
that the autocorrelation function of Eq. (15) decays rapidly. This point is examined 
for a few simple models where there is a frequency change between the reactant and 
product potential surfaces and for varying degrees of anharmonicity. 

The first example for examining Gaussian wavepacket representations is drawn 
from the class of symmetric outer-sphere electron transfer reactions. The self- 
exchange of hexaaquoiron (II)/hexaaquoiron (III) 

Fen(H20)6 + Fem(H20)6 --+ Fem(H20)6 + Fen(H20)6 (19) 

has become a prototype for understanding electron transfer [34, 35]. To examine 
this system, we employed the model of Siders and Marcus [351 which approxi- 
mates the frequency dispersion of the aqueous solvent by two frequencies (1 and 
170cm-1). The internal reorganization energy was attributed to an averaged 
metal-oxygen symmetrical stretching frequency of 431 cm-1. For computational 
simplicity in the quantum grid method, the 1 cm -1 mode was replaced by 
a 20 cm-1 mode, with the same reorganization energy. Table 1 gives the para- 
meters employed based upon a 0.14 A change in equilibrium bond length [36] and 
an averaged force constant [37]. 

Figure 2 gives the real part of the autocorrelation function of Eq. (15) as 
a function of time for three different Gaussian propagations. The solid line denotes 
the correlation function when an average frequency of 431 cm -1 is used to 
represent the symmetrical stretching frequency of the metal ligand bond. The 
dotted and dashed curves are the respective frozen and thawed Gaussian 
wavepacket propagations, when separate breathing frequencies of 389 and 
490 cm -1 are used for Fen(H20)6 and Fexn(H20)6, respectively. While a slight 
difference is observed between the use of an average frequency versus two separate 
frequencies, no discernible difference can be seen between the frozen and thawed 
Gaussian propagations. The Gaussian propagations are correct; Fig. 3 compares 
a (thawed) Gaussian propagation for this system denoted by the dotted curve with 
an exact calculation given by the solid curve. The slight difference in the autocorre- 
lation function results in Fig. 2 are mirrored in the rate constant. Figure 4 shows 
the rate constant as a function of - A G  °. The small difference in the peak maxima, 
which define the crossing point into the inverted region, between the solid curve 
(average frequency) and the others (separate frequencies) arises since the potential 
surfaces is not cylindrically symmetric with respect to the reaction coordinate in 
bond displacement with the two separate frequencies as it is for the single fre- 
quency [34]. 

Since the symmetrical stretching (breathing) model of the metal ligand bond is 
quite different for the Fe n and Fem centres (389 and 490 cm- l, respectively), the 
effect of employing an average frequency of 431 cm- ~ may have been anticipated to 
be larger, especially with respect to "frozen" versus "thawed" Gaussian wavepacket 
propagations. Even though the Fen/Fe m system possesses substantial internal 
reorganization energy and a 100 m-  a shift is significant, in examining Figs. 2 and 4, 
little effect is seen upon either the autocorrelation function or the rate constant. 
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Table 1. Model parameters 

391 

A 2 

Fem(H20)6  + Fen(H20)6  ~ FelI(HzO)6 + FenI(H20)6 

e5 = 431 7.36 11670 21n = 11670 

col~ = 20 17.5 3063 2ore = 9017 

0)2s = 170 8.37 5955 

co 1 = 490 -~ 389 4.94 4747 21. = 12290 

coe = 389 ~ 490 5.55 7547 

col, = 20 17.5 3063 2o,, = 9017 

co2~ = 170 8.37 5955 

Fenl(H20)6 + Run(NH3)6 ~ FeU(H20)6 + RuUI(NH3)6 

A 2 
CSve = 431 2in = 6224 

5.20 5827 

ChRu = 405 1.40 397 

co~.s = 20 28.2 7952 2out = 23 440 

co2s = 170 13.5 15490 

cove = 490 ~ 389 3.49 2369 2in = 2672 

coR~ = 350 ~ 500 1.10 303 

cols = 20 28.2 7952 )~out = 23 440 

coz~ = 170 13.5 15490 

Com(NH3)6 -k e -~ c o n ( N H a ) 6  

co = 494 ~ 357 5.85 6109 

Nonperturbative electron transfer dynamics for 1-4 modes 

o91 = 450 2.6 1521 

co z = 170 6.75 3873 

co3 = 20 14.1 1988 

col = 431 2.6 1457 

coz = 405 0.7 99 

co3 = 170 6.75 3873 

co4 = 20 14.1 1988 

1-3 modes with A G  O = 0 

4 modes with A G  O = - 2 7 4 3  

A similar conclusion was reached in a Gaussian wavepacket propagation for the 
same model [38]. The electron transfer dynamics with frozen Gaussians and an 
average stretching frequency were basically identical to either frozen or thawed 
Gaussian propagations with different frequencies. In that study it was surmised 
that the lack of sensitivity was due to the symmetric nature of the system where one 
frequency increases in consort to another's decrease. 

To examine better the effect of a frequency change, we chose the unsymmetrical 
hexaaquiron (III)/hexaamineruthenium (II) reaction, 

F e n I ( H 2 0 ) 6  + R u n ( N H 3 ) 6  --+ F e I I ( H 2 0 ) 6  + R u m ( N H 3 ) 6  . (20) 

The reorganization energies were taken to be one-half of the respective redox 
couple [37]. The parameters for RuH(NH3)6/Rum(NH3)6 and the treatment of the 
solvent again follow Siders and Marcus [35]. In this unsymmetrical case, though 
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the ruthenium ligand frequency changes by 150 cm-1 (from 350 to 500 cm-1), the 
corresponding reorganization energy is small. Therefore, the change in the iron 
displacement dominates the internal reorganization, and contrary to the FeH/Fe lH 
self-exchange reaction, the frequency change does not have a parallel compensa- 
tion. The frequency change in this system may serve as a good test of Gaussian 
wavepacket propagations. Table 1 summarizes the parameters employed where 
a 0.04 A change in equilibrium Ru-N bond distance is used [39]. 

Figure 5 portrays the autocorrelation function for the Fe/Ru reaction. The 
solid curve is obtained when using average stretching frequencies for both the iron 
and ruthenium metal ligand bonds. The dotted and dashed curves are for the 
respective frozen and thawed propagations with separate frequencies. In compar- 
ison to Fig. 2, a dramatic difference is encountered when employing an average 
frequency. The rate constant dependence is encountered when employing an 
average frequency. The rate constant dependence given in Fig. 6 emphasizes this 
point. The difference in the crossing points (rate maxima) is seen in the energy 
difference given in Table 1 and reflects the dominance of the Fem/Fe n internal 
reorganization without compensation from the ruthenium couple when using 
separate frequencies. Yet, still, the frozen and thawed Gaussian propagations are 
practically identical, yielding rate constants that differ by only a few percent. 

For all of the Gaussian propagations the reactant state was chosen to be 
a minimum uncertainty wavepacket (Glauber coherent state). When only fre- 
quency changes occur in an harmonic potential, this choice minimizes the 

Fig. 2. Time dependence of the real part of the autocorrelation function of Eq. (15) for the 
Fen(H20)6/Fem(HzO)6 self-exchange reaction incorporating two solvent modes. The solid line denotes 
a Gaussian wavepacket propagation employing an average metal ligand symmetric stretch frequency. 
The dotted and dashed curves denote frozen and thawed propagations, respectively, using two different 
frequencies corresponding to the Fe ~J and Fem centers 

Fig. 3. Comparison of the autocorrelation function obtained with a Gaussian wavepacket representa- 
tion versus an exact wavepacket representation for the same system given in Fig. 2 

Fig. 4. Rate constant as a function of - A G  O for the system given in Fig. 2. The solid curve is for an 
average frequency and the dotted and dashed curves depict frozen and thawed Gaussian propagations, 
respectively, employing two separate frequencies 

Fig. 5. Time dependence of the real part of the autocorrelation function of Eq. (15) for the 
FenI(H20)6/RuII(NH3)6 cross reaction incorporating two solvent modes. The solid line is from a Gaus- 
sian wavepacket propagation with average stretching frequencies for both F e - O  and R u - N  metal 
ligand bonds. Frozen and thawed Gaussian propagations are, respectively, given by the dotted and 
dashed curves utilizing different frequencies 

Fig. 6. Rate constant as a function of - A G  O for the system given in Fig. 5. Solid line employs an 
average frequency and the dotted (frozen) and dashed (thawed) curves use separate frequencies 

Fig. 7. Autocorrelation function corresponding to the reduction half reaction for com(NH3)6 . The 
dashed curve gives the frozen Gaussian result while the dotted and solid curves are for the thawed and 
exact propagations. The width of the initial reactant state is one-fourth the coherent state value 

Fig. 8. The same system and propagations given in Fig. 7 except that the initial width is four times of 
the coherent state 

Fig. 9. Rate constant as a function of -- A G o for the system of Fig. 8. The curves are similarly identified 
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difference between frozen and thawed Gaussian wavepacket propagations. So for 
a rapidly decaying autocorrelation function, the two different Gaussian propaga- 
tions can be nearly identical as long as the potentials are harmonic. This point can 
be illustrated by examining situations where the width of the initial reactant state is 
chosen to be either narrower or broader than the width of the ground state of the 
harmonic oscillator. 

As an illustration, the half reaction corresponding to the reduction 

CoIII(NH3)6 + e -~ Con(NH3)6 (21) 

is considered. Focusing upon the vibrational levels, a large effect for Gaussians of 
different widths may be anticipated since the frequency changes from 494 to 
357 cm-1 with a 0.178 A change in equilibrium metal ligand bond length between 
the two cobalt oxidation states [40]. The parameters employed are given in 
Table I. Figure 7 gives the autocorrelation function where the initial reactant width 
is one-fourth the minimum uncertainty width. The dashed curve corresponds to the 
frozen Gaussian propagation while the dotted and solid curves represent the 
thawed and exact propagations, respectively. Figure 8 displays parallel propaga- 
tions for a width that is four times the coherent state value. This latter figure 
appears to suggest that it is better to err with a width that exceeds the width of the 
ground state harmonic oscillator wavefunction than one that is proportionately 
smaller. Nevertheless, an error may still result. Figure 9 represents the full energy 
dependency of the rate for the system given in Fig. 8. As Fig. 9 shows, the frozen 
Gaussian approximation overestimates the low energy tail for this case. 

The fact that average breathing frequencies can be used instead of separate 
frequencies, with very low error, has been shown in a comprehensive examination 
of the hexaaquoiron self-exchange reaction [34]. When an average frequency is 
appropriate and the wavepacket is a coherent state, frozen Gaussian propagations 
are exact (for harmonic potentials). As one moves beyond self-exchange reactions 
with their compensating frequency increases and frequency decreases, the approx- 
imation of averaging frequencies becomes poorer. However, for short-term dy- 
namics, little difference between frozen and thawed Gaussian propagations can be 
seen for these cases. If a minimum uncertainty wavepacket is not chosen for the 
reactant state, considerable differences can arise between these two propagations, 
even for harmonic potentials. One is naturally led to consider the behavior for 
anharmonic potentials. 

In addition to its frequency and a dimensionless displacement, a Morse poten- 
tial is completely defined by introducing a dimensionless energy 

ho) 
~2 = (22) 

2D~' 

so that the energy of the nth level is 

~2 ½)2 E ,  = hoo(n + ½) - ~ hco(n + - . (23) 

Realistic values of 6 can range from 0.11 for I2, 0.24 for H2, or 0.81 for the He-I  
Morse potential of the van der Waals complex He/Ia. Anharmonicities will be 
examined for Morse potentials with varying 6's. 

Returning to the Feln/Ru n cross reaction, by systematically increasing c5 the 
autocorrelation function decays proportionally faster. This has a profound effect 
upon the rate. Figure 10 gives the rates from thawed Gaussian propagations 
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Fig. 11. Autocorrelation function of single mode case (o91 = 450) 
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Fig. 12. Rate constant as a function of - - A G  o for 
the single mode case given in Fig. 11 

employing different frequencies for both the iron and ruthenium symmetric stretch- 
ing modes. Two solvent modes were incorporated as given in Table 1 and are 
treated as harmonic. Morse potentials are applied to the metal ligand modes. The 
dashed rate plot is identical with the dashed curve of Fig. 6 and represents 
harmonic metal ligand treatment. The dotted curve is a Morse with c5 = 0.1 and an 
observed ground state frequency equivalent to the ground state harmonic. The 
dash-dotted curve corresponds to 6 = 0.2. In these two cases, the reactant and 
product potentials were assumed to have the same degree of anharmonicity. The 
solid curve considers the low-frequency modes to have 6 = 1 and the high-fre- 
quency modes 6 -- 2. All cases start with a minimum uncertainty wavepacket for 
the reactant state whose width is allowed to vary during its propagation. Frozen 
Gaussians (not shown) become increasingly worse as either the level of anhar- 
monicity increases while the observed frequency remains unchanged (the average 
405 and 431 c m -  1 values in Table 1) or the frequencies change for a given degree of 
anharmonicity. 
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4.2. Golden rule 

Quantum mechanical treatments of electron transfer processes are based upon 
adiabatic or nonadiabatic approaches depending upon the magnitude of the 
nonadiabatic electron transfer matrix element V. The overwhelming majority of the 
nonadiabatic treatments are formulated within the limits of first-order perturba- 
tion theory, employing Fermi's golden rule [18]. This linear response limit greatly 
simplifies the theoretical development and has enjoyed considerable popularity. 
A major question to be answered is when is the linear response limit applicable and 
when does it fail [18, 19]. 

As a first step towards answering this question, the population transfer to 
products from a series of reactant states containing from one to four quantum 
modes is examined. The parameters defining these states are listed in Table 1. The 
three- and four-mode examples explicitly incorporate the previous model quantum 
description (a few harmonic modes) for a solvent. The equations of motion are 
integrated for a range of values of the nonadiabatic potential coupling. In all cases 
the potential coupling is taken to be constant (Condon approximation). 

For the one-mode case, the perturbative rate is given by integrating the 
autocorrelation function shown in Fig. 11. As the figure demonstrates, in practice, 
the instantaneous rate experiences recurrence due to the periods of the funda- 
mental frequencies of the bound modes of the system. This may be formally 
circumvented by time averaging over half a period of the oscillation between the 
turning points of the mode motion to yield the rate versus free energy curve of 
Fig. 12. The rates so obtained agree with other perturbative treatments. In contrast 
to the high-temperature limit rate constant of Eq. (4), here comparison is more 
appropriately made with a low-temperature limit. For this system, the maximum 
rate at the crossing point given by a polaron treatment [24] is 5.71 x 108 cm 2 s- 2. 
Figure 12 displays nearly an identical result (5.79 x 10s). Note that these "rates", as 
those given in Figs. 4, 6, 9, and 10, need to be multiplied by the square of the 
nonadiabatic potential coupling in cm-1 in order to yield a conventional rate 
constant in reciprocal seconds. 

Theoretical justification for ignoring the recurrences derives from the assump- 
tion that the solvent dynamics are sufficiently rapid (and disperse) to dephase the 
system on any relevant molecular time scale so that the autocorrelation function 
decays to zero before a recurrence can be reached. In essence, this overdamped 
solvent enforces the linear response limit. From the perspective of the autocorrela- 
tion function, the solvent is dephasing the vibrational coherence on the product 
electronic surface. However, the autocorrelation function is derived from the 
first-order limit of the correlation function in Eq. (8) which defines the time- 
dependent potential coupling. In perturbative calculations where obvious recur- 
rences occur, the time-averaging operation is well defined and there is no need to 
invoke another operation which would mimic the solvent dephasing mechanisms 
(although without damping or dephasing no real rate constant exists). 

Vastly different behavior is seen for nonperturbative calculations for bound 
electronic surfaces. The panels in Fig. 13 show the survival probability for the 
reactant population for the one-mode case for couplings of 500, 350, 200, and 
50 cm 1 from top to bottom. The dashed curves give the golden rule rate and the 
dotted curves are the classic two-level system rate of cosZ(Vt/h). For high potential 
couplings, the small high-frequency oscillations parallel the two-level rate. The 
short-time behavior, on average, does follow the golden rule rate. However, the 
system is still a coherent two-level system and the electronic coherence is not 
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Fig. 13. Survival probability of the population on the reactant electronic surface for the one-mode 
system with potential couplings from top to bottom of 500, 350, 200, and 50 cm -~ 

destroyed, only modulated. Upon increasing the number of modes two limiting 
forms of behavior can be observed: self-dephasing at higher couplings were the 
modulations decay to zero and steady-state behavior at lower couplings where 
constant populations are retained on the reactant and product surfaces. Nonzero 
values of A G o change the coupling range at which these appear. 

5. Remarks 

A substantive advantage of time-correlation function expressions for the electron 
transfer rate is that they permit going beyond the simple spin-boson golden rule 
model to include such important effects as nonequilibrium initial states [41] 
anharmonic vibrations, vibrational and electronic dephasing. Still, only a few 
actual calculations using these methods have appeared [5-7, 38, 41]. Since the 
integrals that give the rate coefficient are over a multimode correlation function, we 
generally expect rapid, essentially irreversible relaxation and dephasing, so that 
recurrences are unimportant and the short-time behavior of the correlation func- 
tion is the only relevant part. Under these conditions, Gaussian wavepackets, and 
even fl'ozen Gaussians, are adequate to describe the vibrational wavefunctions. 
This is no longer fully true when large-frequency changes occur, and it can fail 
badly for large anharmonicities (Sect. 4.1). 
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The golden rule itself is based on several assumptions,  including little deplet ion 
of the initial-state popula t ion,  a large effective density of final states, and a pertur-  
bative mixing that  is in some sense small. Section 4.2 shows that  for a simple 
two-state, one-mode model,  short times and  fairly weak coupling, the decay indeed 
follows the golden rule predict ion at short  times (little depletion). However,  the real 
behavior  is far more  complicated,  showing breaking of the original wavepacket,  
recurrences and  v i rbra t ional  modula t ions  and  frequencies. In  a real si tuation,  of 
course, other modes will couple, thermal  coupl ing will occur, and  dephasing 
processes will be crucial; these can be induced straightforwardly in the correlat ion 
funct ion approach [11]. 
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